Cell interactions within nascent neural crest cell populations transiently promote death of neurogenic precursors.

نویسندگان

  • T M Maynard
  • Y Wakamatsu
  • J A Weston
چکیده

We have previously shown that cultured trunk neural crest cell populations irreversibly lose neurogenic ability when dispersal is prevented or delayed, while the ability to produce other crest derivatives is retained (Vogel, K. S. and Weston, J. A. (1988) Neuron 1, 569-577). Here, we show that when crest cells are prevented from dispersing, cell death is increased and neurogenesis is decreased in the population, as a result of high cell density. Control experiments to characterize the effects of high cell density on environmental conditions in culture suggest that reduced neurogenesis is the result of cell-cell interactions and not changes (conditioning or depletion) of the culture medium. Additionally, we show that the caspase inhibitor zVAD-fmk, which blocks developmentally regulated cell death, rescues the neurogenic ability of high density cultures, without any apparent effect on normal, low-density cultures. We conclude, therefore, that increased cell interaction at high cell densities results in the selective death of neurogenic precursors in the nascent crest population. Furthermore, we show that neurogenic cells in cultured crest cell populations that have dispersed immediately are not susceptible to contact-mediated death, even if they are subsequently cultured at high cell density. Since most early migrating avian crest cells express Notch1, and a subset expresses Delta1 (Wakamatsu, Y., Maynard, T. M. and Weston, J. A. (2000) Development 127, 2811-2821), we tested the possibility that the effects of cell contact were mediated by components of a Notch signaling pathway. We found that neurogenic precursors are eliminated when crest cells are co-cultured with exogenous Delta1-expressing cells immediately after they segregate from the neural tube, although not after they have previously dispersed. We conclude that early and prolonged cell interactions, mediated at least in part by Notch signaling, can regulate the survival of neurogenic cells within the nascent crest population. We suggest that a transient episode of cell contact-mediated death of neurogenic cells may serve to eliminate fate-restricted neurogenic cells that fail to disperse promptly in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway.

Trunk neural crest cells segregate from the neuroepithelium and enter a 'migration staging area' lateral to the embryonic neural tube. After some crest cells in the migration staging area have begun to migrate on a medial pathway, a subpopulation of crest-derived cells remaining in the migration staging area expresses mRNAs for the receptor tyrosine kinase, c-kit, and tyrosinase-related protein...

متن کامل

Molecular identification of distinct neurogenic and melanogenic neural crest sublineages.

Clonal and lineage analyses have demonstrated that although some neural crest cells have the ability to generate multiple cell types and display self-renewal ability, other crest cells generate a single or limited repertoire of cell types. However, it is not yet clear when, and in what order, crest cells become specified to adopt a particular fate. We report that the receptor tyrosine kinases T...

متن کامل

Timing and pattern of cell fate restrictions in the neural crest lineage.

The trunk neural crest of vertebrate embryos is a transient collection of precursor cells present along the dorsal aspect of the neural tube. These cells migrate on two distinct pathways and give rise to specific derivatives in precise embryonic locations. One group of crest cells migrates early on a ventral pathway and generates neurons and glial cells. A later-dispersing group migrates latera...

متن کامل

Neuronal differentiation from postmitotic precursors in the ciliary ganglion.

In the chick ciliary ganglion, neuronal number is kept constant between St. 29 and St. 34 (E6-E8) despite a large amount of cell death. Here, we characterize the source of neurogenic cells in the ganglion as undifferentiated neural crest-derived cells. At St. 29, neurons and nonneuronal cells in the ciliary ganglion expressed the neural crest markers HNK-1 and p75(NTR). Over 50% of the cells we...

متن کامل

The chinless mutation and neural crest cell interactions in zebrafish jaw development.

During vertebrate development, neural crest cells are thought to pattern many aspects of head organization, including the segmented skeleton and musculature of the jaw and gills. Here we describe mutations at the gene chinless, chn, that disrupt the skeletal fates of neural crest cells in the head of the zebrafish and their interactions with muscle precursors. chn mutants lack neural-crest-deri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 127 21  شماره 

صفحات  -

تاریخ انتشار 2000